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Abstract 3

A method of order four for finding multiple zeros of nonlinear functions is developed. The method is based on Jarratt’s 4

fifth-order method (for simple roots) and it requires one evaluation of the function and three evaluations of the derivative. The 5

informational efficiency of the method is the same as previously developed schemes of lower order. For the special case of double 6

root, we found a family of fourth-order methods requiring one less derivative. Thus this family is more efficient than all others. All 7

these methods require the knowledge of the multiplicity. 8

c© 2007 Published by Elsevier Ltd 9
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10

1. Introduction 11

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example 12

Ostrowski [1], Traub [2], Neta [3] and references there. Here we develop a high-order fixed point type method to ap- 13

proximate a multiple root. There are several methods for computing a zero ξ of multiplicity m of a nonlinear equation 14

f (x) = 0, see Neta [3]. Newton’s method is only of first order unless it is modified to gain the second order of conver- 15

gence, see Rall [4] or Schröder [5]. This modification requires a knowledge of the multiplicity. Traub [2] has suggested 16

the use of any method for f (m)(x) or g(x) =
f (x)
f ′(x)

. Any such method will require higher derivatives than the corre- 17

sponding one for simple zeros. Also the first one of those methods requires the knowledge of the multiplicity m. In 18

such a case, there are several other methods developed by Hansen and Patrick [6], Victory and Neta [7], and Dong [8]. 19

Since in general one does not know the multiplicity, Traub [2] suggested a way to approximate it during the iteration. 20

For example, the quadratically convergent modified Newton’s method is 21

xn+1 = xn − m
fn

f ′
n

(1) 22

and the cubically convergent Halley’s method [9] is 23

xn+1 = xn −
fn

m+1
2m f ′

n −
fn f ′′

n
2 f ′

n

(2) 24
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where f (i)
n is short for f (i)(xn). Another third-order method was developed by Victory and Neta [7] and is based on1

King’s fifth-order method (for simple roots) [10]2

wn = xn −
fn

f ′
n

xn+1 = wn −
f (wn)

f ′
n

fn + A f (wn)

fn + B f (wn)

(3)3

where4

A = µ2m
− µm+1

5

B = −
µm(m − 2)(m − 1) + 1

(m − 1)2 (4)6

and7

µ =
m

m − 1
. (5)8

Yet two other third-order methods developed by Dong [8], both require the same information and both are based on a9

family of fourth-order methods (for simple roots) due to Jarratt [11]:10

xn+1 = xn − un −
f (xn)(

m
m−1

)m+1
f ′(xn − un) +

m−m2−1
(m−1)2 f ′(xn)

(6)11

xn+1 = xn −
m

m + 1
un −

m
m+1 f (xn)(

1 +
1
m

)m
f ′

(
xn −

m
m+1 un

)
− f ′(xn)

(7)12

where un =
f (xn)
f ′(xn)

.13

Our starting point here is Jarratt’s method [12] given by the iteration14

xn+1 = xn −
f (xn)

a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)
(8)15

where un is as above and16

yn = xn − aun

vn =
f (xn)

f ′(yn)

ηn = xn − bun − cvn .

(9)17

Jarratt has shown that this method (for simple roots) is of order 5 [12] if the parameters are chosen as follows18

a = 1, b =
1
8
, c =

3
8
, a1 = a2 =

1
6
, a3 =

2
3
. (10)19

It requires one function- and three derivative-evaluation per step. Thus the informational efficiency (see [2]) is 1.25.20

Since Jarratt did not give the asymptotic error constant, we have employed Maple [13] to derive it,21

1
24

A5 +
1
2

A4 A2 −
1
4

A2
3 +

1
8

A2
2 A3 + A4

2,22

where Ai are given by (14) with m = 1.23
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2. New higher order scheme 1

We would like to find the six parameters a, b, c, a1, a2, a3 so as to maximize the order of convergence to a root ξ 2

of multiplicity m. Let en, ên, εn be the errors at the nth step, i.e. 3

en = xn − ξ

ên = yn − ξ

εn = ηn − ξ.

(11) 4

If we expand f (xn), and f ′(xn) in Taylor series (truncated after the N th power, N > m) we have 5

f (xn) = f (xn − ξ + ξ) = f (ξ + en) =
f (m)(ξ)

m!

(
em

n +

N∑
i=m+1

Ai e
i
n

)
(12) 6

or 7

f (xn) =
f (m)(ξ)

m!
em

n

(
1 +

N∑
i=m+1

Bi−mei−m
n

)
(13) 8

where 9

Ai =
m! f (i)(ξ)

i ! f (m)(ξ)
, i > m 10

Bi−m = Ai (14) 11

f ′(xn) =
f (m)(ξ)

(m − 1)!
em−1

n

(
1 +

N∑
i=m+1

i

m
Bi−mei−m

n

)
. (15) 12

To expand f ′(yn) and f ′(ηn) we use some symbolic manipulator, such as Maple [13], we find 13

f ′(yn) =
f (m)(ξ)

(m − 1)!
êm−1

n

(
1 +

m + 1
m

B1ên +
m + 2

m
B2ê2

n + · · ·

)
(16) 14

ên = en − aun =

(
1 −

a

m

)
en +

a

m2 B1e2
n +

[
2a

m2 B2 −
a(m + 1)

m3 B2
1

]
e3

n + · · ·

=
1
2

en +
1

2m
B1e2

n +
1
m

[
B2 −

m + 1
2m

B2
1

]
e3

n + · · · (17) 15

where, for simplicity, we chose 16

a =
m

2
. (18) 17

Thus 18

f ′(yn) =
f (m)(ξ)

(m − 1)!
em−1

n (c0 + c1en + c2e2
n + c3e3

n + · · ·) (19) 19

where 20

c0 = 21−m

c1 =
3m − 1

m
2−m B1

c2 =

[
4 − 2m

m2 B2
1 +

3(3m − 2)

2m
B2

]
2−m

c3 =

[
25m − 21

4m
B3 +

m2
− 21m + 34

2m2 B1 B2 −
m3

− 12m2
− 13m + 48

6m3 B3
1

]
2−m .

(20) 21
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The error in ηn is given by1

εn = en − bun − cvn = λen +
2b + ĉ(m − 1)

2m2 B1e2
n2

+

[
8b + (5m − 6)ĉ

4m2 B2 −
4b(m + 1) − (3m2

− 7)ĉ

4m3 B2
1

]
e3

n + · · · (21)3

where4

ĉ = 2m−1c,

λ = 1 −
b + ĉ

m
.

(22)5

We now expand f ′(ηn) in terms of en6

f ′(ηn) =
f (m)(ξ)

(m − 1)!
εm−1

n

(
1 +

m + 1
m

B1εn +
m + 2

m
B2ε

2
n + · · ·

)
7

=
f (m)(ξ)

(m − 1)!
em−1

n (d0 + d1en + d2e2
n + · · ·) (23)8

where9

d0 = λm−1

d1 =
λm−2 B1

m3

{
(m2

+ b2)(m + 1) − bm(m + 3) + (m + 1)ĉ2
+

[
2b(m + 1) − m

m2
− 6m − 3

2

]
ĉ

}
d2 = −

λm−3

32m5 B2
1 [α1b + β1ĉ + γ1ĉ2

+ δ1ĉ3
] +

λm−3

m5 B2[α2 + β2ĉ + γ2ĉ2
+ δ2ĉ3

+ γ3ĉ4
]

(24)10

where11

α1 = 16[2m(m + 1)b2
− m2(m − 7)b + 2m2(m + 1)]

β1 = 8m[6b2(m + 1)(m + 3) + b(m3
− 15m2

− m − 1) − m(m − 1)(m2
− 2m − 7)],

γ1 = 4[8bm2(m + 1) + m(m − 1)(m3
− 6m2

− 3m − 16) + 4m2(m − 1)]

δ1 = 16m2(m − 1)

α2 = 32[b4(m + 2) − 4b3m2
+ 2b2m(m + 4)(2m − 1) − 2bm3(m + 5) + m5(m + 2)]

β2 = 8[16b3(m + 2) − 48b2m(m + 2) − bm2(5m2
− 51m − 98) + m3(5m2

− 27m − 26)]

γ2 = 8[24b2(m + 2) − 48bm(m + 2) − m2(5m2
− 35m − 42)]

δ2 = 128[b(m + 2) − m(m + 1)]

γ3 = 32(m + 2).

(25)12

Now substitute (13), (15), (19) and (23) into (8) and expand the quotient fn/(a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)) in13

Taylor series, we get14

en+1 = en −
fn

a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)
15

= C1
1 en + C1

2 B1e2
n + (C1

3 B2
1 + C2

3 B2)e
3
n + (C1

4 B3
1 + C2

4 B1 B2 + C3
4 B3)e

4
n + · · · (26)16

where the coefficients C j
i depend on the parameters b, c, a1, a2, a3. These 5 parameters can be used to annihilate the17

coefficients of en, e2
n, e3

n and one of the terms in e4
n . Thus the method is of order p = 4. Actually, except for m = 2,18

we used b = a = m/2 and thus we have only 4 parameters at our disposal. This is sufficient to obtain fourth-order19

methods.20
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Table 1
Results for Example 2

n x f x f

0 0.8 0.1296 0.6 0.4096
1 1.00074058 0.21954564(−5) 1.02772277 0.31600247(−2)
2 1.00000014 0.750396(−13)

Because of the complexity of the above equations, we have listed the parameters for m = 2, 3, 4, 5 and 6. All these 1

methods are of fourth order. 2

m 2 2 3 4 5 6

a 1 4
3

3
2 2 5

2 3

b free free free 2 5
2 3

c free 1−b
3

3
5 −

b
4 0.06478279184 0.0217372041 0.0082119760

a1 −
1
2

1−2b
2

25
108 b −

43
72 −0.4374579865 −0.4303454005 −0.3681491853

a2 2 3(b − 1) 4 −
25
72 b 7.90412890309 18.8154365391 39.6876826792

a3 0 2 −
125
72 −5.9128176652 −15.8940830499 −35.6993794378

r1 −
1
2

2
9 b −

13
18

5b
1296 −

37
108 −0.2362609294 −0.1647909926 −0.1201790024

r2
3
8

7
8 −

b
2

25
81 −

5b
972 0.1546752539 0.1013867224 0.07303104907

r3
1
8

1
8

2
25 0.08352683535 0.06967247928 0.05702535018

3

The error is given by 4

en+1 = (r1 B1 B2 + r2 B3
1 + r3 B3)e

4
n (27) 5

where r1, r2, and r3 are given in the above table for each m. For m = 3, we can choose the free parameter b to equal 6

a = 3/2. 7

To summarize, we managed to obtain a fourth-order method requiring one function- and three derivative-evaluation 8

per step. The informational efficiency of these methods is 1, as all the above mentioned methods for multiple roots. 9

The efficiency index is 1.4142 which is lower than the third-order methods. In the case m = 2 we found a method that 10

will require only two derivative-evaluations (a3 = 0) and thus the informational efficiency is 4/3 and the efficiency 11

index is 1.5874. We could not find such efficient methods for higher m. 12

3. Numerical experiments 13

In our first example we took a quadratic polynomial having a double root at ξ = 1 14

f (x) = x2
− 2x + 1. (28) 15

Here we started with x0 = 0 and the convergence is achieved in 1 iteration. In the second example we took a 16

polynomial having two double roots at ξ = ±1 17

f (x) = x4
− 2x2

+ 1. (29) 18

Starting at x0 = 0.8, our method converged in 1 iteration. When we start at x0 = 0.6, our method required 2 iterations. 19

The results are given in Table 1. 20

Similar results were obtained when starting at x0 = −0.8 and x = −0.6 to converge to ξ = −1. 21

The next example is a polynomial with triple root at ξ = 1 22

f (x) = x5
− 8x4

+ 24x3
− 34x2

+ 23x − 6. (30) 23

Please cite this article in press as: B. Neta, A.N. Johnson, High-order nonlinear solver for multiple roots, Computers and Mathematics with
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Table 2
Results for Example 3

n x f

0 0 −6.
1 0.95239072 −0.23148417(−3)
2 0.99999683 −0.63(−16)

Table 3
Results for Example 4

n x f x f

0 0.1 0.11051709(−1) 0.2 0.48856110(−1)
1 0.12654311(−4) 0.16013361(−9) 0.17709827(−3) 0.31369352(−7)
2 0.3739(−20) 0 0.14341725(−15) 0

Table 4
Results for Example 5

n x f

0 0 19.
1 1.46056319 9.725126111
2 1.00101187 0.368806435(−4)
3 1. 0.

The iteration starts with x0 = 0 and the results are summarized in Table 2. Another example with a double root at1

ξ = 0 is2

f (x) = x2ex . (31)3

Starting at x0 = 0.1 our method converged in 1 iteration, but when we start at x0 = 0.2, our scheme converged in 14

iteration. The results are given in Table 3. The last example having a double root at ξ = 1 is5

f (x) = 3x4
+ 8x3

− 6x2
− 24x + 19. (32)6

Now we started with x0 = 0 and the results are summarized is Table 4.7

References8

[1] A.M. Ostrowski, Solutions of Equations and System of Equations, Academic Press, New York, 1960.9

[2] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New Jersey, 1964.10

[3] B. Neta, Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983.11

[4] L.B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9 (1966) 23–37.12
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